熔岩世界是巨大的系外行星,拥有闪闪发光的天空和被称为岩浆海洋的汹涌澎湃的火山海洋,与太阳系中的行星截然不同。迄今为止,在所有已发现的岩质系外行星中,有近50%的行星被发现能够在其表面保持岩浆,这可能是因为这些行星离它们的主恒星太近了,它们的轨道运行时间不到10天。如此之近的距离导致行星受到恶劣天气的轰击,迫使表面温度达到极致,使其完全不适合我们今天所知的生命存在。
熔融海洋的影响
现在,科学家们在一项新的研究中表明,这些广阔的熔融海洋对观测到的热岩石超级地球的特性有很大的影响,比如它们的大小和进化路径。
他们最近发表在《天体物理学杂志》上的研究发现,由于熔岩具有极强的可压缩性,岩浆海洋会导致富含熔岩且没有大气层的行星比类似大小的固态行星密度略高,并影响它们的地幔(即环绕行星核心的厚内层)结构。
基尔斯滕-博利(Kiersten Boley)说,即便如此,由于对这些天体的研究出了名的不足,要描述熔岩行星的基本运作是一项艰巨的任务。她是这项研究的第一作者,也是俄亥俄州立大学的一名天文学研究生。
探测与理解
博利说:"熔岩世界是非常奇特、非常有趣的东西,由于我们探测系外行星的方式,我们更偏向于发现它们。"她的研究围绕着理解系外行星独特的基本成分,以及如何调整这些元素,或者在熔岩世界的情况下,调整它们的温度,可以完全改变它们。
在这些神秘的燃烧世界中,最著名的一颗是巨蟹座 55 号,这是一颗距离我们约 41 光年的系外行星,科学家们称它既有波光粼粼的天空,也有汹涌澎湃的熔岩海。
虽然太阳系中也有一些天体,比如木星的卫星木卫一,火山活动非常活跃,但在我们的宇宙空间中,还没有真正的熔岩行星可以让科学家们近距离研究。不过,研究岩浆海洋的成分如何促进其他行星的演化,比如它们保持熔融状态的时间长短以及最终冷却的原因,可以为了解地球自身的炽热历史提供线索,博利说。"当行星最初形成时,尤其是岩质陆地行星,它们在冷却过程中会经历一个岩浆海洋阶段。因此,熔岩世界可以让我们了解几乎所有陆地行星的演化过程。"
研究技术和发现
研究人员利用系外行星内部建模软件Exoplex和从以前的研究中收集到的数据构建了一个包含几种岩浆成分信息的模块,模拟了类似地球的行星的几种进化情况,其表面温度在2600到3860华氏度之间--这是行星的固态地幔变成液态的熔点。
研究小组从他们创建的模型中发现,岩浆洋行星的地幔有三种形式:第一种是整个地幔完全熔化,第二种是地表有岩浆洋,第三种是三明治式的模型,即地表有岩浆洋,中间是固体岩石层,另一层是最靠近行星核心的熔融岩浆层。
研究结果表明,第二种和第三种形式的行星比完全熔融的行星更常见。根据岩浆海洋的成分,一些无大气层的系外行星比其他行星更善于捕获挥发性元素--形成早期大气层所必需的氧和碳等化合物--达数十亿年之久。
例如,该研究指出,一颗质量比地球大4倍的基底岩浆类行星能够捕获的水的质量是目前地球海洋的130多倍,是目前该行星表面和地壳中碳含量的约1000倍。
博利说:"当我们讨论一颗行星的进化及其拥有支持生命所需的不同元素的潜力时,能够在其外壳中捕获大量挥发性元素可能会对宜居性产生更大的影响。"
对宜居性的影响和未来研究
熔岩行星距离适宜居住以支持生命还有很长的路要走,但了解帮助这些世界达到这一目标的过程非常重要。然而,这项研究清楚地表明,在将这些世界与固态系外行星进行比较时,测量它们的密度并不是描述这些世界特征的最佳方法,因为岩浆海洋既不会显著增加也不会降低行星的密度,博利说。
相反,他们的研究表明,科学家们应该关注其他地球参数,比如行星表面重力的波动,以检验他们关于热熔岩世界如何运行的理论,尤其是如果未来的研究人员计划利用他们的数据来帮助更大规模的行星研究的话。
这项工作是地球科学和天文学的结合,基本上开启了有关熔岩世界的令人兴奋的新问题。