高速实验可以帮助确定用于航天器、飞行器、头盔或其他物体的轻质保护性"超材料"。由支柱和横梁组成的复杂蜂窝状结构比相同材料的实心板更能承受超音速撞击。此外,具体的结构也很重要,有些结构比其他结构更能抵御冲击。
这就是麻省理工学院工程师在微观超材料实验中的发现--这些材料是有意打印、组装或以其他方式设计的,其微观结构赋予了材料整体特殊的性能。
在最近发表在《美国国家科学院院刊》上的一项研究中,工程师们报告了一种快速测试超材料结构阵列及其对超音速撞击的适应性的新方法。
通过以超音速发射微粒子,麻省理工学院的工程师们可以测试各种超材料的弹性,这些超材料是由小到一个红血球的结构制成的。图为微粒子撞击超材料结构的四段视频截图。图片来源:研究人员提供
在实验中,研究小组将印刷好的微小超材料晶格悬挂在微观支撑结构之间,然后以超音速向材料发射更微小的粒子。然后,研究小组利用高速摄像机以纳秒级的精度捕捉每次撞击及其后果的图像。
他们的研究发现了一些超材料结构,与完全固态、非结构化的同类材料相比,它们更能抵御超音速撞击。研究人员说,他们在微观层面观察到的结果可以推广到类似的宏观冲击,从而预测新材料结构在不同长度尺度上如何抵御现实世界中的冲击。
研究人员打印出错综复杂的蜂窝状材料,悬浮在相同材料的支撑柱之间(如图)。这种微观结构的高度相当于人类三根头发的宽度。图片来源:研究人员提供
"我们正在学习的是,材料的微观结构很重要,即使在高速变形的情况下也是如此,"研究报告的作者、麻省理工学院机械工程系教授卡洛斯-波特拉(Carlos Portela)说。"我们希望找出抗冲击结构,将其制成涂层或面板,用于航天器、车辆、头盔以及任何需要轻质和保护的物体。"
该研究的其他作者包括第一作者、麻省理工学院研究生托马斯-布特鲁伊尔(Thomas Butruille)和DEVCOM陆军研究实验室的约书亚-克龙(Joshua Crone)。
纯粹的影响
团队的新高速实验建立在之前工作的基础上,工程师们在实验中测试了一种超轻碳基材料的韧性。这种材料比人的头发丝还细,由微小的碳支柱和碳束制成,研究小组打印了这些碳支柱和碳束,并将其放置在玻璃载玻片上。然后,他们以超过音速的速度向材料发射微粒子。
这些超音速实验表明,微结构材料能够承受高速撞击,有时能使微粒子偏转,有时则能捕获它们。Portela说:"但有许多问题我们无法回答,因为我们是在基底上测试材料,这可能会影响它们的行为。"
麻省理工学院的工程师们捕捉到了微粒子通过精确设计的超材料发射的视频,其测量厚度比人的头发丝还细。图片来源:研究人员提供
在他们的新研究中,研究人员开发了一种测试独立超材料的方法,以观察材料在没有背衬或支撑基底的情况下,自身如何承受撞击。
在目前的设置中,研究人员将感兴趣的超材料悬挂在两根由相同基础材料制成的微型支柱之间。根据被测试超材料的尺寸,研究人员计算出两根支柱必须相距多远,才能在两端支撑材料,同时让材料对任何冲击做出反应,而不受支柱本身的影响,这样就能确保我们测量的是材料特性,而不是结构特性。
研究小组确定了支柱支撑设计后,便开始测试各种超材料架构。对于每种结构,研究人员首先在一个小型硅芯片上打印出支撑柱,然后继续打印超材料作为柱子之间的悬浮层,在一个芯片上打印和测试数百个这样的结构。
穿孔和裂缝
研究小组打印出的悬浮超材料类似于错综复杂的蜂巢状截面。每种材料都印有特定的三维微观结构,如重复八面体或多面体多边形的精确支架。每个重复单元的大小与一个红血球相当。由此产生的超材料比人的头发丝还要细。
随后,研究人员以每秒 900 米(每小时 2000 多英里)的速度 - 完全在超音速范围内向这些结构发射玻璃微粒子,测试每种超材料的抗冲击能力。他们用相机捕捉了每次撞击,并逐帧研究了生成的图像,以了解射弹是如何穿透每种材料的。接下来,他们在显微镜下检查了这些材料,并比较了每次撞击的物理后果。
波特拉说:"在建筑材料中,我们看到了撞击后小圆柱形弹坑的形态。但在固体材料中,我们看到了许多径向裂缝和被刨出的大块材料"。
总之,研究小组观察到,发射的粒子在晶格超材料上造成了小的穿孔,而材料却保持完好无损。与此相反,当以相同的速度将相同的粒子发射到质量相等的非晶格固体材料中时,它们会产生大裂缝,并迅速扩散,导致材料破碎。因此,微结构材料能更有效地抵御超音速撞击以及多重撞击。尤其是印有重复八面体的材料似乎最坚硬。
意见和未来方向
"在相同的速度下,我们看到八面体结构更难断裂,这意味着单位质量的超材料能够承受的冲击力是块状材料的两倍,"波特拉说。"这告诉我们,有一些结构可以使材料变得更坚硬,从而提供更好的冲击保护"。
展望未来,该团队计划利用新的快速测试和分析方法来确定新的超材料设计,希望能标记出可升级为更坚固、更轻便的防护装备、服装、涂层和镶板的架构。
波特拉说:"最让我兴奋的是,我们可以在台式机上进行大量这些极端实验。这将大大加快我们验证新型高性能弹性材料的速度。"
编译来源:ScitechDaily