作为SpaceX公司第 30 次商业补给服务任务的一部分,NASA的鞋盒大小的卫星 BurstCube 被发射到国际空间站,以研究强大的宇宙爆炸并为多信使天文学做出贡献。美国国家航空航天局(NASA)的"爆裂立方"(BurstCube)是一颗鞋盒大小的卫星,旨在研究宇宙中最强大的爆炸,它已被送往国际空间站。
艺术家概念图中的BurstCube将环绕地球运行,寻找短伽马射线暴。图片来源:美国宇航局戈达德太空飞行中心概念图像实验室
美国东部时间3月21日星期四下午4点55分,该航天器搭乘SpaceX公司第30次商业补给服务(Commercial Resupply Services)任务,从佛罗里达州卡纳维拉尔角太空站的40号发射场升空。到达空间站后,BurstCube 将打开包装,随后被释放到轨道上,在那里它将探测、定位和研究短伽玛射线暴--高能量光的短暂闪烁。
位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的BurstCube首席研究员杰里米-珀金斯(Jeremy Perkins)说:"BurstCube可能很小,但除了研究这些极端事件外,它还在测试新技术,并为早期职业天文学家和航空航天工程师提供重要的经验。"
艺术家概念图中的BurstCube将环绕地球运行,寻找短伽马射线暴。图片来源:美国宇航局戈达德太空飞行中心概念图像实验室
短伽马射线暴通常发生在中子星碰撞之后,中子星是在超新星中爆炸的大质量恒星的超密集残余物。中子星在旋转时还会发出引力波,即时空结构中的涟漪。
天文学家对同时使用光波和引力波来研究伽马射线暴很感兴趣,因为每种方法都能让他们了解该事件的不同方面。这种方法是了解宇宙的新方法的一部分,被称为多信使天文学。产生短伽马射线暴的碰撞也会产生金和碘等重元素,这是我们所知的生命的基本成分。
目前,唯一一次引力波和来自同一事件的光的联合观测是在2017年,名为GW170817。这是多信使天文学的一个分水岭,此后科学界一直希望并准备有更多的同时发现。
这张照片拍摄于2023年的戈达德立方体卫星实验室,照片中的BurstCube卫星处于飞行状态。图片来源:NASA/Sophia Roberts
马里兰大学学院帕克分校和戈达德的研究科学家兼BurstCube团队成员Israel Martinez说:"BurstCube的探测器是倾斜的,这样我们就能在广阔的天空中探测和定位事件。我们目前的伽马射线任务在任何时刻都只能看到约 70% 的天空,因为地球挡住了它们的视线。利用像BurstCube这样的卫星扩大我们的覆盖范围,可以提高我们捕捉到更多与引力波探测相吻合的爆发的几率"。
BurstCube的主要仪器可以探测到能量在50000到100万电子伏特之间的伽马射线。(相比之下,可见光的能量范围在 2 到 3 电子伏特之间)。
当伽马射线进入 BurstCube 的四个探测器之一时,会遇到一个被称为闪烁体的碘化铯层,它将伽马射线转换成可见光。然后,光线进入另一层,即由 116 个硅光电倍增管组成的阵列,将其转换为电子脉冲,这就是爆立方所测量的。对于每条伽马射线,研究小组都能在仪器读数中看到一个脉冲,提供精确的到达时间和能量。有角度的探测器会告诉研究小组事件的大致方向。
工程师在测试前将爆破立方体安装到戈达德热真空室的平台上。资料来源:美国国家航空航天局/索菲亚-罗伯茨
BurstCube属于被称为立方体卫星的一类航天器。这些小型卫星有一系列标准尺寸,以直径 10 厘米(3.9 英寸)的立方体为基础。立方体卫星为进入太空提供了具有成本效益的途径,以促进突破性科学、测试新技术,并帮助教育下一代科学家和工程师进行任务开发、建造和测试。
戈达德的BurstCube机械工程师朱莉-考克斯(Julie Cox)说:"我们能够订购BurstCube的许多部件,如太阳能电池板和其他现成部件,这些部件正在成为立方体卫星的标准化部件。这让我们能够专注于任务的新颖之处,比如自制组件和仪器,这将展示新一代小型化伽马射线探测器如何在太空中工作。"
BurstCube由位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心领导。它由美国宇航局总部的科学任务局天体物理学处资助。爆裂立方的合作单位包括:位于亨茨维尔的阿拉巴马大学、马里兰大学学院帕克分校、维尔京群岛大学、华盛顿的大学空间研究协会、华盛顿的海军研究实验室以及位于亨茨维尔的美国宇航局马歇尔太空飞行中心。
编译自:ScitechDaily