新研究解码了人类新皮层的布线。由柏林夏里特大学领导并发表在《科学》杂志上的最新研究发现,人类新皮层神经细胞的布线与小鼠有很大不同。研究发现,人类神经元主要以单向方式传输信号,而小鼠神经元通常以循环模式发送信号。这种结构上的差异可能会提高人脑处理信息的效率和效果。这些发现对推动人工神经网络技术的发展具有潜在的意义。
新研究发现,与小鼠的循环互动不同,人类新皮质神经元单向交流效率更高。这一发现可能会通过模仿人类大脑的连通性来促进人工神经网络的发展。记录多达十个神经元活动的多补丁实验装置。图片来源:Charité | 彭扬帆
新皮质是人类智力的关键结构,厚度不足五毫米。在大脑的最外层,200 亿个神经元处理着无数的感官知觉,规划着行动,并构成了我们意识的基础。这些神经元是如何处理所有这些复杂信息的呢?这在很大程度上取决于它们之间的"连接"方式。
夏里特神经生理学研究所所长约尔格-盖格(Jörg Geiger)教授解释说:"我们以前对新皮层神经结构的理解主要基于小鼠等动物模型的研究结果。在这些模型中,相邻的神经元经常像对话一样相互交流。一个神经元向另一个神经元发出信号,然后另一个神经元再向它发出信号。这意味着信息经常以循环往复的方式流动"。
带有机器人机械手的多通道装置,可在两轮实验之间自动冲洗玻璃移液管。图片来源:Charité | 彭扬帆
人类的新皮质比小鼠的新皮质更厚、更复杂。尽管如此,研究人员之前一直假设--部分原因是缺乏数据--它遵循相同的基本连接原则。盖革领导的夏里特研究小组现在利用极其罕见的组织样本和最先进的技术证明了事实并非如此。
在这项研究中,研究人员检查了23名在夏里特接受神经外科手术治疗耐药性癫痫患者的脑组织。在手术过程中,医学上有必要切除脑组织,以便观察其下的病变结构。患者同意将这些组织用于研究目的。
神经元的旋转重建。图片来源:Charité | Sabine Grosser
为了能够观察人类新皮层最外层相邻神经元之间的信号流,研究小组开发出了一种改进版的"multipatch"技术。这样,研究人员就能同时监听多达十个神经元之间的通信。因此,他们能够在细胞停止体外活动前的短时间内进行必要数量的测量,以绘制网络图。他们分析了近 1170 个神经元之间的通信渠道,以及约 7200 个可能的连接。
他们发现,只有一小部分神经元之间进行了相互对话。"人类的信息往往是单向流动的。它很少直接或通过循环返回起点,"该论文的第一作者彭扬帆博士解释说。他曾在神经生理学研究所从事这项研究,目前在夏里特神经学系和神经科学研究中心工作。研究小组根据人类网络结构的基本原理设计了一种计算机模拟,以证明这种前向信号流在处理数据方面的优势。
来自多配接装置的微量移液管接近单个神经元。图片来源:Charité | Franz Mittermaier
研究人员给人工神经网络布置了一项典型的机器学习任务:从口语数字录音中识别出正确的数字。在这项语音识别任务中,模仿人类结构的网络模型比以小鼠为模型的网络模型获得了更多的正确响应。它的效率也更高,同样的成绩在小鼠模型中需要相当于 380 个神经元,而在人类模型中只需要 150 个神经元。
"我们在人类身上看到的定向网络结构更强大,也更节省资源,因为更多独立的神经元可以同时处理不同的任务,"彭解释道。"这意味着局部网络可以存储更多信息。目前还不清楚我们在颞叶皮层最外层的发现是否会扩展到其他皮层区域,也不清楚这些发现能在多大程度上解释人类独特的认知能力。"
过去,人工智能开发人员在设计人工神经网络时会从生物模型中寻找灵感,但也会独立于生物模型来优化算法。盖格说:"许多人工神经网络已经使用了某种形式的前向连接,因为它能为某些任务带来更好的结果。人脑也显示出类似的网络原理,这令人着迷。这些对人类新皮质中具有成本效益的信息处理的洞察,可以为完善人工智能网络提供更多灵感"。
编译来源:ScitechDaily