约翰斯-霍普金斯大学医学院的科学家们研制出了一种最小的合成细胞,它能够跟随外部化学信号,并表现出一种被称为"对称性破坏"的基本生物学概念。这项令人难以置信的创新旨在增进我们对细胞运动的了解,并设计出在体内运输药物的新方法。今天(6 月 12 日),《科学进展》(Science Advances)杂志详细介绍了这项研究。
艺术家们利用显微镜图像和图形渲染,展示了一个能够感知定向化学线索并自我组织响应的最小合成细胞。图片来源:约翰-霍普金斯大学医学院井上实验室,由 Shiva Razavi 和 Turhan Pathan 创作,经编辑
了解对称性破坏
细胞运动之前的一个步骤是打破对称,当细胞分子最初对称排列时,通常在受到刺激后重组为不对称的模式或形状。这类似于迁徙的鸟类在对阳光或地标等环境指南针做出反应时转变为新的队形,从而打破对称。在微观层面上,免疫细胞会感知集中在感染部位的化学信号,并打破对称,穿过血管壁到达受感染的组织。当细胞打破对称性时,它们会转变为极化和不对称结构,为向目标移动做好准备。
"对称性破缺的概念对生命至关重要,影响着生物学、物理学和宇宙学等多个领域,"在约翰-霍普金斯大学攻读研究生时领导这项研究的希瓦-拉扎维(Shiva Razavi)博士说,他在约翰霍普金斯大学攻读研究生时领导了这项研究,现在是麻省理工学院的博士后研究员。"了解对称性破缺是解开生物学基本原理和发现如何利用这些信息来设计治疗方法的关键。"
长期以来,人们一直认为找到在合成细胞中模仿和控制对称性破坏的方法对于了解细胞如何检测其化学环境并重新排列其化学轮廓和形状至关重要。
在这项研究中,科学家们创造了一个带有双层膜的巨大囊泡--一个由磷脂、纯化蛋白质、盐和提供能量的 ATP 组成的裸体简化合成细胞或原细胞。原细胞呈球形,因此被昵称为"泡泡"。在实验中,科学家们成功地设计出了具有化学感应能力的原细胞,它能促使细胞打破对称性,从一个近乎完美的球体变成一个凹凸不平的形状。研究人员说,该系统专门设计用于模仿免疫反应的第一步,能够根据中性粒细胞感知到的周围蛋白质发出攻击病菌的信号。
拉扎维说:"我们的研究展示了类细胞实体如何能够感知外部化学线索的方向,模拟生物体内的条件。通过从零开始构建类细胞结构,我们可以更好地识别和理解细胞以最简化的形式打破对称性所需的基本组成部分。"
给药领域的未来应用
科学家们说,有朝一日,化学传感可用于体内靶向给药。
约翰-霍普金斯大学医学院细胞生物学教授、细胞动力学中心主任、资深作者井上隆成(Takanari Inoue)博士说:"我们的想法是,可以把任何你想要的东西--蛋白质、RNA、DNA、染料或小分子--打包到这些气泡中,利用化学传感告诉细胞该去哪里,然后让细胞在预定目标附近破裂,这样药物就能被释放出来。"
为了激活囊泡的化学感应能力,研究人员在合成细胞中植入了两种作为分子开关的蛋白质--FKBP和FRB。蛋白质 FKBP 被置于细胞中心,而 FRB 则被置于细胞膜上。当科学家们在气泡细胞外引入一种化学物质--雷帕霉素时,FKBP就会移动到细胞膜上与FRB结合,从而引发一种叫做肌动蛋白聚合的过程,也就是合成细胞骨架的重组。
在原细胞内部,化学反应产生了由肌动蛋白组成的杆状结构,对细胞膜施加压力,使其弯曲。
研究人员使用了一种名为共聚焦显微镜的专门快速三维成像技术来记录原细胞的化学感应能力;他们必须以每15到30秒一帧的速度快速记录图像,因为原细胞会对化学信号做出快速反应。
下一步,研究人员的目标是让这些合成细胞具备向所需目标移动的能力。最终,研究人员希望设计出的合成细胞能在靶向药物输送、环境传感以及其他需要精确移动和对刺激做出反应的领域中发挥重要的潜在应用。
编译来源:ScitechDaily