科学家发现婴儿大脑与人工智能模型惊人相似

2024年06月29日 07:52 次阅读 稿源:cnBeta.COM 条评论

一项新的研究表明,婴儿的大脑并不像以前认为的那样不成熟;相反,他们利用出生后的"无助期"来开发基础模型,类似于驱动人工智能生成的模型。这项由都柏林圣三一学院神经科学家领导的研究刚刚发表在《认知科学趋势》杂志上,研究首次发现,现代大脑数据并不支持对婴儿无助感的经典解释。

gr1_lrg.jpg

与许多动物相比,人类在出生后很长一段时间内都是无助的。许多动物,如马和鸡,出生当天就能行走。这种漫长的无助期使人类婴儿处于危险之中,也给父母带来了巨大的负担,但令人惊讶的是,这种无助期却经受住了进化的压力。

跨物种研究的启示

"自 20 世纪 60 年代起,科学家们就认为人类婴儿表现出的无助感是由于出生时的限制造成的。他们认为,人类婴儿头大,必须早产,导致大脑发育不成熟,无助期长达一岁。"认知神经科学教授、论文第一作者罗德里-库萨克(Rhodri Cusack)教授解释说。

研究团队由库萨克教授、美国奥本大学克里斯蒂娜-查韦特教授和 DeepMind 高级人工智能研究员 Marc'Aurelio Ranzato 博士组成,库萨克教授利用神经成像技术测量婴儿大脑和心智的发育情况;克里斯蒂娜-查韦特教授负责比较不同物种的大脑发育情况;DeepMind 高级人工智能研究员 Marc'Aurelio Ranzato 博士负责比较不同物种的大脑发育情况。

"我们的研究比较了不同动物物种的大脑发育情况。它借鉴了一个长期项目时间转换"(Translating Time),该项目将不同物种的相应年龄等同起来,从而确定人类大脑在出生时比许多其他物种更加成熟。"

研究人员利用脑成像技术发现,人类婴儿大脑中的许多系统已经开始运作,并能处理来自感官的丰富信息流。这与人们长期以来认为婴儿大脑的许多系统尚未发育成熟,无法发挥作用的观点相矛盾。

研究小组随后将人类的学习与最新的机器学习模型进行了比较,在后者中,深度神经网络受益于"无助"的预训练期。

在过去,人工智能模型是直接根据所需的任务进行训练的,例如训练自动驾驶汽车识别它们在道路上看到的东西。但现在,模型最初都是经过预先训练,以便在海量数据中发现模式,而不执行任何重要任务。由此产生的基础模型随后用于学习特定任务。研究发现,这种方法最终会加快新任务的学习速度,并提高性能。

对未来人工智能发展的影响

"我们提出,人类婴儿也同样利用婴儿期的'无助'期进行预训练,学习强大的基础模型,并在以后的生活中以高性能和快速泛化来支撑认知。这与近年来在生成式人工智能领域取得重大突破的强大机器学习模型非常相似,例如OpenAI的ChatGPT或Google的Gemini,"库萨克教授解释道。

研究人员表示,未来对婴儿学习方式的研究很可能会启发下一代人工智能模型。

"虽然人工智能取得了重大突破,但基础模型比婴儿消耗大量能源,需要的数据也多得多。了解婴儿是如何学习的,可能会对下一代人工智能模型有所启发。"他最后说:"下一步的研究将是直接比较大脑和人工智能的学习情况。"

编译自/scitechdaily

DOI: 10.1016/j.tics.2024.05.001

我们在FebBox(https://www.febbox.com/cnbeta) 开通了新的频道,更好阅读体验,更及时更新提醒,欢迎前来阅览和打赏。使用教程

对文章打分

科学家发现婴儿大脑与人工智能模型惊人相似

2 (50%)
已有 条意见

    最新资讯

    加载中...

    编辑精选

    加载中...

    热门评论

      Top 10

      招聘

      created by ceallan